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Abstract. The modified Kondo–Heisenberg model for high-Tc oxide superconductors and the
Kondo–Heisenberg model are analysed by the composite-operator expansion method. We study
the effects of short-range antiferromagnetic correlations on the density of states and related band
dispersion near the Fermi level when the Heisenberg insulator is doped. A set of self-consistent
equations for fermionic correlation functions are solved by a numerical calculation. It turns
out that the next-to-nearest-neighbour copper spin–spin correlations on extended lattice clusters
can be used to predict the width of the band crossing the Fermi level in the same experimental
range. Results are compared with previous calculations and a detailed discussion is given on
the approximations implemented.

1. Introduction

High-Tc oxide superconductors have very peculiar properties [1] at the insulator–metal
transition (IMT).

One way to investigate the IMT is by doping an antiferromagnetic spin background
with a finite density of holes. Hole motion into a Heisenberg antiferromagnet is a long-
standing stimulating problem [2-14]. Most interest, in the past, has been in thet–J model
[2–5, 13, 14] analysed by spin-wave expansions [2, 13, 14], the slave-fermion Schwinger
boson representation for Green functions [3, 4], and a string picture [5] for a variational
wave function with the aim of achieving an understanding of the low-energy spectrum for
Mott–Hubbard gap systems. Kondo–Heisenberg models have been derived [6–8] for charge-
transfer gap models at the spin-fermion weak-coupling [6] and strong-coupling [7, 8] limits,
and analysed by exact diagonalization [9], the projection operator method [10], and the
composite-operator method [8, 11, 12]. Since the beginning, the first kind of approximation
has been to consider the one-hole or at most the two-hole motion in the spin background
[9, 10, 4], but just in the last few years calculations have been performed for finite-density
hole motion into the spin-fluctuating background [3, 6–8, 11–14] at finite temperature.

On the other hand, frustration models [15–17] for spin–spin correlations have been
introduced to provide the first theoretical picture of the phase diagram [15] for high-Tc

superconductors. On the grounds of these models, it has been pointed out [15, 16] that
spin-frustration mechanisms may lie behind the new phenomena. Moreover, it has also been
stressed [18] that antiferromagnetic correlations up to second-order spin–spin correlations
are needed even in the normal phase. Complicated configurations have been analysed
for magnetic interactions [2–10, 13–16, 18–20], but up to now not beyond the strictly
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inner CuO2 cluster correlations. Here, we show that, at second order of spin correlations,
frustration turns out to be an important tool for estimating band-structure details of the
models involved.

Recently, it has been shown [19, 20] that the p–d or Emery model [21] describes very
well the main electronic excitations exhibited by the density of states (DOS) using two
similar but different approaches: the projection operator method [19] and the composite-
operator expansion method [20]. It is worth noting that in the two approaches almost the
same collective excitations have been chosen to form the reduced Hilbert space for the
operator expansion, and that slight differences do not affect the qualitative features of the
results. However, neither calculation can predict the bandwidth (1Ws) of the p band of
singlet character (Ws), which at moderate doping crosses the Fermi level, or the expected
qualitative variation of the bandwidth1Ws with short-range spin fluctuationsand doping.
In [19] it is suggested that1Ws does not reduce to the experimental value [22] because
short-range antiferromagnetic correlations are not taken into account up to the right order
of magnitude, while in [20] it has been pointed out that the p–d mixing induces a triplet
DOS transfer to theWs-band that is too strong at the first-order level of the calculation.

In this paper we go a step further by concentrating on higher-order antiferromagnetic
spin–spin correlations in the composite-operator expansion method [23, 20, 24, 12] for
the following two models. To contain the amount of calculation and to study in detail
the spin content of the p–d charge-transfer gap model, we consider its modified Kondo–
Heisenberg (MKH) [8] spin-effective model version, for finite-density hole motion into the
spin background at finite temperature. To understand the effect of the extended spin–spin
interaction of Kondo type on a lattice cluster with respect to the standard on-site one on
the spectral density of states (DOS) and the related band dispersion, we compare the MKH
results to those given by the Kondo–Heisenberg (KH) model obtained from the MKH by
restricting the interaction between the localized copper spin and the oxygen conduction
electron spin to the on-site fixed Cu one only. We obtain the right tendency of1Ws with
doping, the prediction of the bandwidth in the experimental range and, most importantly,
an explanation for the spin-frustration mechanism that is at the heart of the results. A short
communication on the present results has been reported in [11], stressing the spin effect at
the first order of spin–spin correlations also present in the p–d model [20].

In the next section, we write down the effective MKH Hamiltonian derived from the
p–d mixing model on the CuO2 plane, and the special case of the KH model. The electron
propagators are obtained by use of the retarded Green’s function in a compact form. In
section 3, a self-consistent numerical calculation is performed to obtain the DOS and the
momentum dependence of the band dispersion energies including the Van Hove singularity.
The results and a discussion of the systematic changes of the DOS at the IMT that occur
on doping will be presented for the two models. Finally, section 4 is devoted to concluding
remarks.

2. MKH and KH models

We consider the MKH model derived in [8] from the p–d mixing model on the CuO2 plane
in the U → ∞ limit:

H =
∫

dx

[
εpp†p − tp†(1 − α(−i∇))p + Jkp

†
γ σpγ n + 1

2
JHnα · n

]
(2.1)

wherep is for the oxygen electron,n = d†σd is for copper spin fluctuations and

pγ (x) = γ (−i∇)p(x) (2.2a)
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nα(x) = α(−i∇)n(x) (2.2b)

with

γ (k)2 = sin2

(
kx

a

2

)
+ sin2

(
ky

a

2

)
(2.3a)

α(k) = 1

2
(cos(kxa) + cos(kya)) (2.3b)

andγ (k)2 = 1 − α(k).
In the Hamiltonian (2.1) and hereafter, we use the spinor notation.γ is defined on

the p unit cluster identified in (2.3a) by half of the unit lattice stepa and α on the d
unit cluster identified in (2.3b) by the whole unit lattice stepa. The clusters (overlapping
of unit clusters) are extended over many lattice unit lengths. The KH model is simply
given by γ = 1 because the p–d interaction is only given when a p hole moves on the
d site. εp is the p-level energy,Jk ∼ t ' 0.6 eV andJ ' 0.025 eV are good estimates
from phenomenological values [6–10] wheret is related to the p–d energy transfert0 (see
appendix A), andJK andJH = 4J are respectively the Kondo and Heisenberg couplings.

The U → ∞ limit of the Emery model is the main approximation of the calculation.
It ensures that the collective excitations for describing the DOS are strongly determined by
the level transitions given in close proximity to the Fermi level. A detailed derivation of
this approximation is given in appendix A where also the correspondence between p–d and
MKH parameters is given.

The MKH model and related versions have been thoroughly discussed by several authors
[6–10]. Equation (2.1) is slightly different from the Hamiltonian derived in [8] because of
the restriction that only the p–d bonding orbital combination is considered. This is because
we are interested in the interaction between the Cu-electron localized spin and the p-hole
itinerant spin on theextendedclusters, and the energy scales involved show how strong the
itinerant character of the system is with respect to the antiferromagnetic local nature of the
insulator limit given by the Heisenberg term [6–10]. Also we know [19, 20] that the d band
is almost unchanged by hole doping and spin–spin correlations; therefore, in this paper, we
concentrate on investigating, in much more detail, the conduction p band close to the Fermi
level (see appendix A).

The analytical method that we follow is the composite-operator expansion method
pioneered in [23] and then improved in [20, 24, 12]. A summary of the method is given in
appendix B.

We chose the following reduced Hilbert space (RHS) basis for composite operators in
the MKH model:(

ψ1
ψ2

)
=

(
pγ

ps

)
(2.4a)

where we use the notation

ps = σpγ n (2.4b)

which represents the conduction p electron dressed by copper spin fluctuationsn = d†σd.
The equations of motion forψ-fields are

i
∂

∂t
pγ (x) = (εp − t)pγ (x) + tpα

γ (x) + Jkγ
2(−i∇)ps(x)

i
∂

∂t
ps(x) = 6Jkpγ (x) + (εp − t + 2Jk)ps(x) + tσpα

γ (x)n

+ 2Jk

(
σpγ (x)k − 1

2
λσpα

γ (x)n

)
+ 2Jσpγ (x)l

(2.5)
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where the high-order composite operators are

li = iεijkn
α
j nk

ci = p†
γ σipγ

ki = iεijkcjnk.

(2.6)

The operatorli carries information on high-order Cu–Cu cluster spin correlations; theci-
operator is proportional to the oxygen hole number; andki is for the conduction hole dressed
by spin fluctuations.

The normalization matrix is defined by

(I (k))nl = FT〈{ψn(x), ψ†
l (y)}〉 (2.7)

and therefore

I =
(

1 − λα 0
0 Iss

)
(2.8)

where〈...〉 indicates the thermal average and

Iss = 3 + 4as − 3λn′
00α (2.9)

with as = 〈psp
†
γ 〉 andn′

00 = 1
3〈nnα〉. The parameterλ is present to select out, from now

on, the KH model whenλ = 0.
Any correlation function related to physical observables is calculated using the

generalized retarded Green function or retarded propagator defined by

FT〈Rψn(x)ψ†
l (y)〉 =

(
I (k)

1

ωI (k) − (m(k) + δm(ω, k))
I (k)

)
nl

(2.10a)

or

S(ω, k) =
(

1

ω − E(ω,k))
I (k)

)
nl

. (2.10b)

In a mean-field approximation we imposeδm(ω, k) = 0 which restricts the dispersion energy
of the band to being onlyk-dependent:E = E(k). This is the second approximation that
we consider (see the conclusions in section 4).

The energy matrixE is given by

E00 = m00I
−1
00 = εp + t (1 − α)

E0s = m0sI
−1
ss = Jk(1 − α)

Es0 = ms0I
−1
00 = JkIss

Ess = mssI
−1
ss

(2.11)

and the mass matrix by

m =
(

m00 m0s

ms0 mss

)
(2.12)

where

(m(k))nl = FT

〈{
i

∂

∂t
ψn(x), ψ†

l (y)

}〉
. (2.13)
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It is related to the generalized self-energy6 by m = 6I (for details see appendix B).
Explicitly the mass matrix elements are

m00 = [εp − t (1 − α)]I00

m0s = JkI00Iss

ms0 = m0s

mss = (εp − t + 2Jk)Iss + t{4a′
s + 3n′

00α − 3λn′′
00α

2}

− 4Jk

{
(3a + 2as) + λ

[
3

8
n′

00(4 + α)α + 4a′
ss − 8Cpnaassα

]}
+ 4J

(
3n′

00 + 4

3
a′

ssα − 2Cpnaass

)
+ 3

4
λn′

00α

(2.14)

where ass = 2as + 3a with a = 〈pγ p†
γ 〉 the p-hole density in the Cu2O cluster and

as = 〈psp
†
γ 〉 the p-hole–d-spin correlation; moreover, we havea′

s = 〈pα
s p†

γ 〉, a′
ss = 〈pα

s p
†
s 〉

for high-order p-hole–d-spin intersite (dashed) correlations,n′
00 = 〈 1

3nnα〉 for nearest-
neighbour d-spin correlation, andn′′

00 = 〈 1
3nαnα〉 for next-to-nearest-neighbour d-spin

correlations.
Here, the coefficientCpna is related to high-order fermionic mean fields given by [12]

Cpna = 3

2ass

n′
00p ≡ 3

2ass

〈tr(pγ p†
γ )nα

l nl〉.
We expand the higher-order composite operatorpγ nα

l in terms of the operator basis (2.2) of
the RHS by following the approximation of appendix A restricted to contributions around
the Fermi level:

pγ nα
l ' apnapγ + bpnaps. (2.15)

The expansion coefficients are determined by thermal average normalization of
anticommutators:

apna = 〈{pγ nα
l , p†

γ }〉 = 0

bpna = 〈{pγ nα
l , p†

s }〉I−1
ss = 1

3
Cpnaσl

and by explicit calculation of〈{pγ nα
l , p

†
s }〉 we have

Cpna = 3I−1
ss

[
n′

00 + 4

3
a′

sα − λn′′
00α

]
. (2.16)

Finally, we have from (2.15)

〈(pγ p†
γ )nα

l nl〉 '
〈(

1

3
Cpnaσlps

)
(pγ nα

l )

〉
= 1

3
Cpnaass .

The higher-order mean-field〈pγ p†
γ nα

k nl〉 can be decomposed in the Pauli matrices basis as

〈pγ p†
γ nα

k nl〉 = 1

2
{δkm〈tr(pγ p†

γ )nα
l nl〉 − σq〈cqn

α
k nl〉}

where 〈cqn
α
k nl〉 is a chiral state which is neglected because of the assumption of a para-

magnetic ground state.
Observe that we can also write the equations of motion in terms of the energy

coefficients:

i
∂

∂t
ψ(x) =

(
E00 E0s

Es0 Ess

)
ψ. (2.17)
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In this way we see that the new states are given by energy level mixing among thebare
states. By writing the determinant of theS-matrix explicitly, we identify two poles given
by the following two energy eigenvalues:

E±(k) = 1

2

{
Ess + E00 ±

√
(Ess − E00)2 + 4E0sEs0

}
(k) (2.18)

and therefore the dispersion energies of the two bands related to the twocomposite
quasiparticlesgenerated by the overlapping excitation modes from the fundamental fields
pγ andps . Finally, we have for the propagators

S
pγ p

†
γ

= I00

[
E+ − Ess

E+ − E−

1

ω − E+
− E− − Ess

E+ − E−

1

ω − E−

]
S

psp
†
γ

= I00
Es0

E+ − E−

[
1

ω − E+
− 1

ω − E−

]
S

psp
†
s
= Iss

[
E+ − E00

E+ − E−

1

ω − E+
− E− − E00

E+ − E−

1

ω − E−

] (2.19)

and any fermionic correlation function is calculated from the self-consistent integral equation

〈ψψ†〉 = 1

(2π)

∫
dω σψψ†(ω)(1 − fF (ω)) (2.20a)

where

σψψ†(ω) = �

(2π)2

∫
d2k

(
− 1

π

)
Im Sψψ†(ω, k) (2.20b)

is the spectral function andfF (ω) is the Fermi distribution function.
To select the KH model we only need to putγ = 1 andλ = 0 in all of the equations. By

looking at the matrix elements ofI andm we can observe that in theλ-terms we haven′′
00-,

α2-, anda′
ss-contributions. The consequences of these high-orderα-dependent contributions

in the λ-terms will be discussed in the next section.

3. Numerical results for the MKH and KH models

Summarizing the above scheme, we list the complete set of parameters appearing in the
self-consistent integral equations (2.20):a = 〈pγ p†

γ 〉 is the p-hole density in the Cu2O

cluster,as = 〈psp
†
γ 〉 is the p-hole–d-spin correlation, anda′

s = 〈pα
s p†

γ 〉 and a′
ss = 〈pα

s p
†
s 〉

are the high-order p-hole–d-spin intersite (dashed) correlations; and the bosonic mean fields:
n′

00 = 〈 1
3n · nα〉 is the nearest-neighbour d-spin correlation, andn′′

00 = 〈 1
3nα · nα〉 is the

next-to-nearest-neighbour d-spin correlation. High-order fermionic mean fields might be,
generally, reduced to a combination of fermionic mean fields made up of the basis fields
in the RHS and the above bosonic fields which derive from the Heisenberg term in the
Hamiltonian (as was done forCpna).

Up to now, we have only dealt with fermionic propagators; therefore the bosonic mean
fields cannot be self-consistently calculated via the present approximation. We have been
successful in ensuring the mathematical self-consistency in the Hubbard model while leaving
out any free parameter [25, 26]. For MKH and KH models, we considern′

00 = 〈 1
3nnα〉,

n′′
00 = 〈 1

3nαnα〉 as input parameters [20], and look at their effects on the fermionic
observables. This approximation has been good enough to lead to a good qualitative DOS
in the p–d model; therefore, we retain the same set-up as given for the p–d model in [20]
to explore ‘by hand’ the physics of antiferromagnetic correlations. Of course, we look
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upon the present results as very important check points for a more rigorous self-consistent
calculation of both fermion and boson parameters.

After having found the convergent values for the fermionic unknowns, we calculate the
DOS spectrum given by equation (2.20). In Kondo–Heisenberg-type models the bare level
structure is given by the exact Kondo model with the following solution:

Spp†(ω) = 1

4

1

ω − (εp + 3
2J )

+ 3

4

1

ω − (εp − 1
2J )

. (3.1)

A singlet state with energyεp + 3
2J and a triplet state with energyεp − 1

2J are identified.
The same solution [23] is obtained by the composite-operator method for a Kondo model
with the RHS given by the basis (2.4a) with γ = 1 in equation (2.4b). Of course, in the
MKH model, composite excitations are obtained by a mixing of the basic operators (2.4)
or by a linear combination of pγ and ps (with γ 6= 1), as is shown by equation (2.17),
and they correspond to a singlet Kondo-type band (SB) and a triplet Kondo-type band (TB)
with shifted energy pole positions with respect to that of the pure Kondo model. These new
energy positions must be compared with experiment to provide a good starting point for the
analytical scheme. Band dispersion energies are given by equation (2.18) for the SB and
for the TB respectively byE+ andE−.

Table 1. Calculated MKH mean fields for fixed hole numbernh and nearest-neighbour spin
correlationsn′

00. n′′
00 is fixed atn′′

00 = 0.25.

nh (n′
00) 0.01 (0.0) 0.1 (0.0) 0.01 (−0.2) 0.1 (−0.2) 0.01 (−0.4) 0.1 (−0.4)

εp −0.9446 −0.8587 −0.7978 −0.7520 −0.7700 −0.6873
a 0.0095 0.0875 0.0063 0.0802 0.0044 0.0479
as 0.0208 0.1947 0.0152 0.1713 0.0127 0.1255
a′

s −0.0189 −0.1476 −0.0042 −0.1069 0.0014 0.0043
ass 0.0701 0.6518 0.0492 0.5833 0.0386 0.3944
a′

ss −0.0411 −0.3272 −0.0095 −0.2240 0.0045 0.0149
n′

00p 0.0000 0.0000 −0.0025 −0.0321 −0.0035 −0.0382

Table 2. Calculated MKH mean fields for fixed hole numbernh and nearest-neighbour spin
correlationsn′

00. n′′
00 is fixed atn′′

00 = 0.4.

nh (n′
00) 0.01 (0.0) 0.1 (0.0) 0.01 (−0.2) 0.1 (−0.2) 0.01 (−0.4) 0.1 (−0.4)

εp −0.9050 −0.8510 −0.8130 −0.7394 −0.7882 −0.7027
a 0.0086 0.0869 0.006358 0.0647 0.0046 0.0487
as 0.0191 0.1912 0.0147 0.1511 0.0131 0.1281
a′

s −0.0138 −0.1427 −0.0023 −0.0466 0.0010 0.0024
ass 0.0638 0.6429 0.0467 0.4963 0.0399 0.4024
a′

ss −0.0304 −0.3122 −0.0056 −0.1048 0.0033 0.0094
n′

00p 0.0000 0.0000 −0.0023 −0.0259 −0.0037 −0.0390

k-integration is simplified by the fact thatk-dependence appears only throughα(k)

(here note thatγ 2(k) = 1 − α(k)), σψnψ†
n
(ω, k) is given in the formσψnψ†

n
[ω, α(k)], and

k-integration can be performed to get the one-particle density of states [22]:

σψnψ†
n
(ω) = �

(2π)2

∫
d2k σψnψ†

n
[ω, α(k)] (3.2a)
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Figure 1. (a) The MKH dispersion energyE+(k) of
the SB, and (b) thek-integrated spectral densityσpp(ω),
both for the undoped regime (nh = 0 atεp = −1.4 eV)
and for threen′

00-values: 0.0 (chain),−0.2 (dashed),
−0.4 (line). The parametern′′

00 is fixed atn′′
00 = 0.25.

The temperature isT = 0.01 eV.

Figure 2. (a) The MKH dispersion energyE+(k) of
the SB, and (b) thek-integrated spectral densityσpp(ω),
both for the doped regime (nh = 0.1) and for threen′

00-
values: 0.0 (chain),−0.2 (dashed),−0.4 (line). The
parametern′′

00 is fixed atn′′
00 = 0.25. The temperature

is T = 0.01 eV.

that is

σψnψ†
n
(ω) =

∫
dα w(α)σψnψ†

n
[ω, α] (3.2b)

where the functionw(α) is the elliptic integral of the first kind:

w(α) = �

(2π)2

∫
d2k δ(α − α(k))

w(α) = 2

π2
K

(√
1 − α2

) (3.3)

and takes into account the Van Hove singularity.
In tables 1–3 we report the convergent data for fermionic calculated mean fields with

the fixed parameterst = 0.6 eV,Jk = 0.5 eV,J = 0.025 eV and temperatureT = 0.01 eV.
Table 1 is for the MKH model forn′′

00 = 0.25 and table 2 is for the MKH model forn′′
00 = 0.4

(n′′
00 = 〈 1

3n · nα2〉 ≈ 〈α2〉 = 1
4). In figures 1–3 we report data on doping dependence and

spin-correlation effects found for the energy dispersion and DOS, respectively, in the SB,
for the following parameter sets:nh = 0, nh = 0.1 both with n′′

00 = 0.25; andnh = 0.1
with n′′

00 = 0.4 (nh is the hole density in the p cluster). Via the first two figures we study
doping from the insulator phase (figure 1) with no hole in the p cluster to the metallic
phase (figure 2) withnh = 0.1; whereas via figures 2, 3 we consider, for the metallic
states, the effect of second-order spin–spin correlations given by the parametern′′

00, which
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Figure 3. (a) The MKH dispersion energyE+(k) of the SB, and (b) the k-integrated spectral
densityσpp(ω), both for the doped regime (nh = 0.1) and for threen′

00-values: 0.0 (chain),−0.2
(dashed),−0.4 (line). The parametern′′

00 is fixed atn′′
00 = 0.4. The temperature isT = 0.01 eV.

is n′′
00 = 0.25 in figure 2 andn′′

00 = 0.4 in figure 3. The chemical potential is fixed in such
a way that the Fermi energy is atω = 0. Doping is given by the oxygen hole number
nh = 2−n−np wheren = 〈d†d〉 is the d-electron density andnp = 〈p†p〉 is the p-electron
density. For these models we keep to the half-filled case for the localized spin on the copper
sites in the antiferromagnetic insulator limit. Hence, at half-filling:n = 1 andnh = 0.

A very important result is thespin effecton the SB dispersion energy: the strong bending
of the band at the M point. This effect is induced by the strong competition betweenn′

00-
andn′′

00-contributions (see also the following discussion of the parameters from the tables).
It is reduced by increasing doping, recovering to the usual free-particle-like band atn′

00 = 0,
and enhanced by increasingn′′

00 (aboven′
00) up to the same order of the bandwidth as the

one in figure 3(a) for n′′
00 = 0.4. As we see in all of the figures, this effect is always present

in the MKH model.
As far as a comparison with experiment is concerned, the following results are essential.

For fixedn′′
00, we observe that SB pole intensities and SB bandwidths increase on increasing

the doping. Moreover, for fixed doping, the bandwidth is controlled by short-range
correlations given byn′

00 andn′′
00. The bandwidth decreases when nearest-neighbour short-

range spin correlations tend to the antiferromagnetic value. Despite then′
00-behaviour,when

n′′
00 increases, the bandwidth also increases, but with the opposite tendency with respect to

n′
00. It is very important also that the spin effect becomes stronger whenn′′

00 increases.
This means that the spin-effect increase and bandwidth decrease have different origins—
respectively, one fromn′′

00 and the other fromn′
00—which are in strong competition. For

the SB bandwidth at 10% hole concentration we find that the experimental value [22] of
about 0.65 eV is obtained from figure 2 forn′

00 ∼ − 1
3. The mean-fieldn′

00 represents the
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nearest-neighbour spin correlation, and its range [20, 12] is from−1 (the local singlet limit)
to 1

3 (the local triplet limit). In the antiferromagnetic limit, its value [20, 12] is− 1
3. The

experimental value of the SB bandwidth is obtained for dominant antiferromagnetic local
spin coupling. This is consistent with the suggestion [18–20] that antiferromagnetic spin
correlations should reduce the SB bandwidth value from the approximated calculated value
to the experimental range.

Table 3. Calculated KH mean fields for fixed hole numbernh and nearest-neighbour spin
correlationsn′

00.

nh (n′
00) 0.01 (0.0) 0.1 (0.0) 0.01 (−0.2) 0.1 (−0.2) 0.01 (−0.4) 0.1 (−0.4)

εp −2.2834 −2.1857 −2.1726 −2.1073 −2.0714 −2.0289
a 0.0050 0.0500 0.0050 0.0500 0.0050 0.0500
as 0.0111 0.1140 0.0100 0.1045 0.0093 0.10954
a′

s −0.0105 −0.0922 −0.0093 −0.0855 −0.0075 −0.0785
ass 0.0372 0.3782 0.0350 0.3591 0.0336 0.3409
a′

ss −0.0232 −0.2095 −0.0186 −0.1779 −0.0124 −0.1490

Figure 4. (a) The KH dispersion energyE+(k) of the
SB, and (b) the k-integrated spectral densityσpp(ω),
both for the undoped regime (nh = 0 atεp = −2.7 eV)
and for threen′

00-values: 0.0 (chain),−0.2 (dashed),
−0.4 (line). The temperature isT = 0.01 eV.

Figure 5. (a) The KH dispersion energyE+(k) of the
SB, and (b) the k-integrated spectral densityσpp(ω),
both for the doped regime (nh = 0.1) and for threen′

00
values: 0.0 (chain),−0.2 (dashed),−0.4 (line). The
temperature isT = 0.01 eV.

Another result is the distribution of pole energy strengths of the TB and SB in the DOS
spectrum. The SB DOS shows a distortion from the standard mean-field pole singularity.
This is a typical spin-correlation effect [8, 27]. These new data show the doping and the
n′′

00-dynamics of this SB distortion, the latter also found in the p–d calculation of [20].
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In the insulator, on increasingn′′
00, the pole energy positionεSB of the SB for n′

00 = 0
moves toward the FL and increases in intensity, despite the fact that for the case where
n′

00 6= 0 the intensity decreases. Observe that from the interpretation in terms of a moving
chemical potential, this means that the FL moves inside the singlet band. Moreover, we
also stress that TB peaks for differentn′

00-values move far away from the FL for strong
doping, producing a slight increase of the TB–SB gap. For heavy doping and increasing
n′′

00, the εSB-position atn′
00 = 0 moves toward theεSB-position atn′

00 6= 0. At n′′
00 = 0.25

theεSB-position atn′
00 = 0 is much further from FL than it is forn′

00 6= 0, but on increasing
n′′

00 to n′′
00 = 0.4 theεSB-position goes toward the FL.

In figures 4 and 5 and table 3 we report data on the KH model, which is given by the
requirements thatγ = 1 andλ = 0 in all formulas of section 2. The requirementγ = 1 is
to reduce the Kondo interaction at the Cu sites andλ = 0 reduces the MKH to the KH in the
sense that higher-orderk-dependent terms viaα2, high-order copper spin–spin correlations
proportional ton′′

00, and, finally, high-order fermionic oxygen spin–spin dressed correlations
given by the extended (via theα-factor) mean fieldsa′

ss are all neglected. The results
are opposite, stressing the great importance of spin-cluster correlations and momentum
dependence in the extended cluster for CT insulator materials. In figures 4 and 5 we report
data fornh = 0 andnh = 0.1, respectively, for the insulator and the doped regimes. Three
cases forn′

00 show thatno spin effectis found at the M point and a free-particle-like band
form is obtained. Moreover, the SB is also shifted to higher energies, stressing the low-
energy contributions of the neglected terms, and its bandwidth collapses to∼0.1 eV for a
10% doping concentration. In the insulator (figure 4), the band energy is almost symmetric
at the0 and M points of the Brillouin zone, and for increasingn′

00 the symmetry increases
whereas for increasing doping it decreases—recovering the asymmetric form atn′

00 = 0. On
doping, the SB intensity decreases and the bandwidth increases, because the peak distortion
moves towards the FL.

From table 1 we observe that all mean-field parameters proportional to the p-hole number

Figure 6. The MKH spectral densityσpp(ω, k) for the doped regime (nh = 0.05) with
n′

00 =−0.4 andn′′
00 = 0.4. The temperature isT = 0.01 eV.
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(a, as, ass) increase on doping, whereas high-order p-hole-spin–d-electron-spin correlations
(a′

s , a
′
ss) decrease on doping. The behaviour of the same parameters is opposite for increasing

nearest-neighbour d-spin correlationn′
00. By comparing table 1 with table 2, we can observe

the effect of increasingn′′
00: a, as, andass decrease; anda′

s anda′
ss increase. The parameter

behaviour is consistent with the expected phenomenology: hole doping destroys the strong
spin–spin correlations working in the insulator at half-filling. Anyway, the incoming strong
competition arising from hole doping and spin–spin correlations produces a typical frustrated
spin configuration. Because of this, say, first kind of competition, the present analytical
picture is very sensitive to the boson parametersn′

00 and n′′
00. The same complicated

tendency is shown by then′
00p-operator which is proportional tonhn

′
00 for fixed n′′

00. If
n′

00 is fixed,n′
00p decreases on increasing the doping, but on increasingn′′

00 the competition
becomes evident from oscillations around some constant value for high doping. Moreover,
we point out that the role of the second kind of competition—ofn′

00 andn′′
00 themselves—is

particularly important, inducing a change of signal going fromn′
00 = −0.2 to n′

00 = −0.4
in the parametersa′

s anda′
ss , and showing that their increase is very strong and very slightly

reduced by the increase ofn′′
00. This second kind of competition is responsible for the

spin effect so evident in the figures. This situation is much clearer if we compare tables 1
and 2 with table 3, the latter for the KH model in whichn′′

00 = 0. In the latter case, the
qualitative behaviour of all parameters agrees with the MKH picture, buta′

s anda′
ss keep

the same sign, and therefore increase very slowly, until finally there is no spin effect on the
band. The spin effect is the result of the so-called second kind of competition given by the
Kondo-type interaction for theextended cluster. Thus we expect that, in a self-consistent
calculation of fermion and boson parameters [12], the two boson parametersn′

00 and n′′
00

will very strongly contribute in the search for the fixed point.

Figure 7. The KH spectral densityσpp(ω, k) for the doped regime (nh = 0.05) withn′
00 =−0.4.

The temperature isT = 0.01 eV.

In figures 6 and 7 we report the (ω, k)-dependences of the MKH and KH DOS,
respectively, for the following parameter values:nh = 0.05, n′

00 = −0.4, n′′
00 = 0.4; and

nh = 0.05, n′
00 = −0.4. The MKH spectrum shows the bending at the M point of the SB
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while the KH one is almost flat. The TB in the MKH case has the opposite form to and
also a larger bandwidth than the KH case.

4. Concluding remarks

Antiferromagnetic spin correlations have been investigated in the MKH model up to second
order (two dashes on the boson parameter). The results demonstrate the importance of the
competition of two kinds of short-range antiferromagnetic correlation: nearest-neighbour
(n′

00) and next-to-nearest-neighbour (n′′
00) spin correlations on copper sites.

For a normal-phase high-Tc oxide superconductor we assume that the main excitations
from a paramagnetic ground state (i.e. no chiral states) and near the Fermi level are given by
thermal collective states produced by energy level mixing of bare states introduced by the
special choice of basic composite fields. The approximations in the calculation are given
by the expansion of high-order operators in terms of a fixed operator basis which is defined
by the physics around the Fermi level. The energies of the pγ and ps levels are nearly the
same, and are comparable with the Fermi energy.

No other calculation has been done for the IMT in an effort to understand the details of
the singlet band in MKH models. In [9, 10] only one–two-hole motion is considered, and
the existence of the transition is pointed out with the singlet formation roughly at reasonable
expected energies. True comparisons can only be with analogous results reported for the
parent p–d model.

The width calculation of the singlet-type band crossing the Fermi level for a 10% doping
concentration predicts the experimental value very well. In fact, we can reduce the previous
theoretical bandwidth predictions [19, 20] to the experimental value [22] by triggeringn′

00
and n′′

00. This bandwidth is strongly reduced by the nearest-neighbour spin correlations
whenn′

00 decreases to the antiferromagnetic value, and it increases ifn′′
00 increases.n′′

00 is
not explicitly controlled in the p–d model calculations [19, 20].

A spin effect on the band dispersion is observed, and is described for a large set of
parameter values. The spin effect is also produced by the boson parametersn′

00 and n′′
00

which are defined by the complex Kondo-type interactions on the extended clusters in the
MKH model. For sufficiently extended clusters,n′′

00 contributes together withn′
00 to increase

the spin effect. When the Kondo interaction is reduced only at the Cu sites, the KH model
no longer shows a spin effect, and the singlet-type bandwidth collapses to∼0.1–0.2 eV,
far from the experimental data. The same spin effect is reported for the first time in the
p–d model [20] but involved in the complex spin–charge composite p–d interactions in
which the contribution fromn′′

00 is not manifest. In [19] the spin effect is not observed
at all, probably because of the finite-U , Coulomb on-site repulsion, and therefore more
complex (than those considered in [20]) p–d cluster-renormalized interactions from the
lower-Hubbard-level transitions.

We have restricted our calculation to the mean-field limit of the composite-operator
approach to the MKH model (see after equation (2.10)). The self-energy contributionsω

and k from δm(ω, k) in equation (2.10) have never been considered in previous calcul-
ations for MKH models. However, in the p–d model [22],δmpp(k) has been estimated
for a generalized one-loop composite-operator approximation [23, 24, 12] to the self-
energy contribution for the singlet band. The correction goes in the same direction as
the one fromn′′

00, i.e. it enlarges the bandwidth. In fact the loop correction is an intersite
contribution which carries indirect cluster correlations related ton′′

00. As we have seen,
in the MKH model, the mean-field result is enough for estimating the singlet bandwidth,
but most importantly it clarifies the physical role ofn′′

00. Thus, we expect a complicated
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dynamical decay of composite-operator quasi-particles in a self-consistent treatment ofn′′
00

including dynamical corrections (work in progress), as was suggested by results in [23] (see
also [27]), where the imaginary part of the self-energy (theω-dependence) of the electron
vanishes atω = 0 (T = 0) and starts increasing withω—behaviour which is given by the
only spin-fluctuation contribution, fromn′

00.
The two phenomena predicted—theWs-bandwidth contraction and the spin effect—

have different origins: (a) the bandwidth decreases on decreasingn′
00 and increases on

increasingn′′
00; and (b) the spin effect increases on decreasingn′

00 and is also enhanced on
increasingn′′

00. Therefore, the spin effect increase ‘works’ forWs-bandwidth reduction and
it is mainly producedby n′

00, while bandwidth reduction iscontrolled and suppressedby n′′
00.

Antiferromagnetic local spin correlations have strong effects in the MKH model because
of the first-order role played by the next-to-nearest-neighbour spin correlations (given by
n′′

00). A typical frustration mechanism [14–16] seems to exist into the extended clusters
and it is generated, on the one hand, by the hole-doping–spin-interaction competition, and,
on the other hand, by the nearest-neighbour–next-to-nearest-neighbour spin competition.
Frustration has been mainly considered only in the superexchange interaction Cu–O–Cu
ligand spins, and, therefore, for the Cu nearest neighbours [14, 15, 13]. However, high-
order terms in spin–spin correlations have been discussed [16] for the Inui, Doniach and
Gabay effective model in which a Heisenberg antiferromagnet is weakly doped, and it is
found that second and third neighbours depend directly on doping implementing strong
frustration effects on the stiffness and velocity of spin waves.
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Appendix A. Derivation of Hamiltonian parameters of the MKH effective model from
p–d model ones

To approximate p–d composite excitations to the main contributions around the FL we
introduce a recursive iteration by using Taylor expansion of composite operators to identify
each order of the expansion by the effective couplings.

Let us start from p–d equations of motion presented in detail in [20]:

i
∂

∂t
p = εpp + 2t0ηγ (A.1)

i
∂

∂t
η = εηη − t0σ

µnµpγ . (A.2)

The Fourier transform of equation (A.2) is

η = − t0

(ω − εη)
σµnµpγ . (A.3)

To pick up the energy components of (A.3) aroundω ∼ εp, we can write theω-function as

1

ω − εη

= 1

(ω − εη) − (εη − εp)
. (A.4)
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The Taylor expansion of (A.4) aroundω ∼ εp is

1

(ω − εη)
= − 1

(εη − εp)

(
1 + ω − εp

(εη − εp)

)
+ · · · . (A.5)

At first order of the (A.5) expansion, we have from equation (A.3)

η ' t0

(εη − εp)
σµnµpγ . (A.6)

By inserting (A.6) into equation (A.1) we have

i
∂

∂t
p = εpp + 2t2

0

(εη − εp)
(σµnµpγ )γ (A.7)

which for µ = 0 defines the energy transfer coupling in the kinetic term of the MKH model
for the p electron:

t = − 2t2
0〈n〉

(εη − εp)
. (A.8)

At second order of the (A.5) expansion, we have from equation (A.3)

η = t0

(εη − εp)
σµnµ

[
pγ + 1

(εη − εp)
(ω − εp)pγ

]
(A.9)

and since the Fourier transform of equation (A.1) is

p = 2t0

(ω − εp)
ηγ (A.10)

equation (A.9) becomes

η = t0

(εη − εp)
σµnµ

[
pγ + 1

(εη − εp)
(2t0)ηγ 2

]
. (A.11)

Therefore, by using again the first-order approximation,

η = t0

(εη − εp)
σµnµ

[
pγ + 1

(εη − εp)

(2t2
0)

(εη − εp)
(σµnµpγ )

γ 2

]
. (A.12)

Finally, to calculate the two coupling constants of the MKH model related to spin couplings,
we consider the equation of motion for fluctuations from the p–d model:

i
∂

∂t
nµ = 2t0(η

†σµpγ − p†
γ σµη). (A.13)

Let us remember that the MKH model is derived [8] assumingn0 constant (no charge
fluctuations). At half-filling we haven0 ≡ 〈n〉 = 1. From equations (A.12) and (A.13),
both for the spin component, we find

i
∂

∂t
ni = 4t2

0

(εη − εp)
iεijkp

†
γ σipγ nk + 8t4

0

(εη − εp)3
〈p†pα2〉iεijkn

α
j nk (A.14)

where we can identify the Kondo term in the first term and the Heisenberg one in the second
term—whose coefficients are, respectively, the Kondo and Heisenberg couplings from the
p–d model.
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At half-filling, from equations (A.8) and (A.14) we have for the MKH model

t = − 2t2
0

(εη − εp)

Jk = 2t2
0

(εη − εp)

JH ≡ 4J = t4
0

(εη − εp)3
.

(A.15)

In this paper we consider the following realistic parameters:t0 = 0.6 eV and 1 =
(εη − εp) = 1.2 eV. The related MKH values from equation (A.15) are|t | = 0.6 eV,
Jk = 0.5 eV, andJ = 0.025 eV or JH = 0.1 eV. The sign oft depends on the sign
definition in the MKH Hamiltonian. In equation (2.1) we definet to be positive.

Appendix B. The composite-operator method

In the composite-operator method [23], excitation modes are identified by choosing a certain
series of operators (generally composite) and by expanding the time derivative of operators
in terms of this operator series. To define the expansion, the normalization matrix must be
identified and then the expansion coefficients are identified.

Let us assume that we have identified an appropriate series of fermionic operatorsψn(x).
Their time derivatives are expressed as an expansion in terms of this series of operators and
residual terms:

i
∂

∂t
ψn(x) =

∑
n′

εnn′(−i∇)ψn′(x) + δjn(x) = jn(x) (B.1)

wherex indicates(t, x) and εnn′(−i∇) indicates that the coefficientsεnn′ operate as the
momentum-dependentεnn′(k) on the Fourier transform ofψn(x). For the normalization of
operators, we use the norm

Inl(k) = FT〈{ψn(x), ψ†
l (y)}〉 (B.2)

where FT indicates the Fourier transform and is defined for an arbitrary functionf (x) as

FTf (x) =
∫

d2x e−ik·xf (x). (B.3)

The expansion coefficients are defined from

mnl(k) ≡
∑

l′
εnl′(k)Il′l(k) = FT〈{jn(x), ψ†

l (y)}〉 (B.4)

with

〈{δjn(x), ψ†
l (y)}〉 = 0. (B.5)

In the present model and for the present basis (2.4) this condition is verified (for details
see [3] and [9]). The coefficientsεnl(k) are mean fields which represent the level shift and
the on-site and intersite mixing among composite excitations. The matrixmnl(k) has the
hermiticity property:

mnl(k) = mln(k)∗ (B.6)

since 〈{
i

∂

∂t
ψn(x), ψ†

l (y)

}〉
=

〈
{ψn(x), −i

∂

∂t
ψ†

l (y)}
〉
. (B.7)
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Then the retarded function〈Rψn(x)ψ†
l (y)〉 is obtained in the form

FT〈Rψn(x)ψ†
l (y)〉 =

(
1

ω − ε(k) − 6(ω,k)
I (k)

)
nl

(B.8)

where FT again indicates the Fourier transform and is now defined by

FT〈Rψn(x)ψ†
l (0)〉 = −i

∫
dt d2x eiωt−ik·x〈Rψn(x)ψ†

l (0)〉. (B.9)

The self-energies6(ω,k) and6†(ω, k) are defined by

〈R δjn(x) ψ†
l (y)〉 =

∑
n′

6nn′

(
i

∂

∂t
, −i∇

)
〈Rψn′(x)ψ†

l (y)〉 (B.10a)

and

〈Rψn(x) δj
†
l (y)〉 =

∑
l′

〈Rψn(x)ψ†
l′(y)〉6†

l′l

(
−i

∂

∂ty
, i∇y

)
. (B.10b)

They are obtained from

δmnl(ω, k) ≡ FT〈R δjn δj
†
l 〉I = 6(ω,k)I (k) = I (k)6†(ω.k) (B.11)

where the subscript ‘I ’ indicates the irreducible part, and from equations (B.8) and (B.10)
is defined by

〈R δjn(x) δj
†
l (y)〉I = 〈R δjn(x) δj

†
l (y)〉 −

∑
l′

6
†
l′l

(
−i

∂

∂ty
, i∇y

)
〈R δjn(x) ψ†

l′(y)〉. (B.12)

The dynamical correctionδm(ω, k) satisfies the sum rule∫
dω

(
− 1

π

)
Im δmnl(ω, k) = FT〈{δjn(x), δj

†
l (y)}〉. (B.13)
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